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K-SPLINE: A NEW CURVE FOR ADVANCED HULL MODELLING1

Kevin Cudby

Abstract. The k-spline is introduced and the underlying equations presented. These equations yield four parameters, including the 
area  coefficient.  The k-spline is  inherently  smooth  and convex,  which  reduces the  need for  heuristic  computing.  The k-spline 
equations facilitate input parsing, which permits a user-friendly interface. A family of light displacement sailboat hulls is presented 
which have k-spline sections, a k-spline centreplane curve, and an overhanging transom stern. These hulls are modelled by applying a 
metasurface to a framework of transverse sections and longitudinal curves. These variants are created by manipulating longitudinal 
parameter curves which define some of the k-spline parameters. The area coefficients do not change between variants. A practical 
application is demonstrated, in which the underwater shape of a sailboat hull can be modified,  without  affecting its hydrostatic 
characteristics in the upright condition. All variants have practically identical displacement, LCB, and LCF, in the upright condition. 
In the heeled condition, the waterlines and the position of the centre of flotation differ between variants. The overhanging stern leads 
to a small but usually negligible impact on upright displacement, LCB, and LCF, between variants. When the hull has an immersed 
transom stern, manipulating the k-spline parameters does not affect the upright displacement, LCB, and LCF. It is proposed that such 
a family of hull shapes allows a designer to investigate potential performance differences using computational fluid dynamics and/or 
tank testing. This is only one of numerous possible applications for the k-spline. The k-spline has been implemented in an advanced 
hull modelling application.

NOMENCLATURE
α Angle of deadrise
a2 Floor factor
ai Coefficient
As Section area
ACC Area coefficient curve
b Breadth at DTL
BFC Bilge factor curve
Ca Coefficient of section area
CL Centreline
CPC Centreplane curve
DEC Deck edge curve
DRC Deadrise curve
DTL Datum line
FFC Floor factor curve
h Draft at CL
LWL Length on the waterline
LCB Longitudinal centre of buoyancy
LCF Longitudinal centre of flotation
LOA Length overall
m Bilge factor
p3 K-spline index
pm Maximum index
s Deadrise
SAC Curve of areas, or section area curve
t Parametric variable
y Athwartships co-ordinate
z Vertical co-ordinate

1. INTRODUCTION

Parametric hull modelling offers the ability to develop a 
family of  candidate  hull  shapes  by varying  key  shape 
parameters. These hull shapes are then compared against 
mission-specific  performance  requirements,  such  as 
resistance,  stability,  and  sea-keeping,  under  various 
weather and sea conditions. The variant which offers the 
best  balance  of  performance  criteria  is  selected  for 
further development.

Implementing  such  a  system  requires  software  that 
facilitates  parametric  variation  of  the  hull  model:  a 
parametric modeller.

One  established  approach  to  parametric  hull  design  is 
based on a skeleton, or framework, of fair curves such as 
the centreplane curve CPC, the datum line DTL, and a 
set of section shapes. The framework defines a hull shape 
by  specifying  points  and  curves  on  the  actual  hull 
surface.  This  approach  offers  close  control  of  key 
parameters,  such  as  centre  of  buoyancy.  It  is  quite 
different to modelling strategies that use “control points” 
which are indirectly related to the hull surface. 

The construction of a framework-based model requires a 
diverse toolbox of fair curves and surfaces. Harries and 
Abt (1999) introduced the f-spline [1], which defines a 
fair curve by optimising a b-spline for fairness criteria, 
and  the  lofted  surface  [1],  which  applies  fair  skinning 
interpolation to convert the framework into a fair surface.
More  recently,  Friendship  Systems  GmbH  [2]  have 
developed  a more  powerful  type  of  faired  surface,  the 
metasurface.  Like  the  lofted  surface,  the  metasurface 
applies  a  faired  b-spline  surface  to  a  framework  of 
smooth curves. The metasurface allows a framework to 
be  skinned  in  several  sections,  for  example,  one 
metasurface can be used to skin the main body of a hull, 
and a second to skin the bow. The metasurface software 
ensures a smooth transition from one surface to the next, 
by  ensuring  that  the  both  surfaces  have  equal  tangent 
angles along the boundary. These basic tools have made 
framework-based hull modelling a practical reality.

This paper introduces a new curve which complements 
existing parametric design tools. Designated the k-spline, 
it  describes  a  smooth,  convex  curve  suitable  for  the 
underwater sections and lower topsides of a wide variety 
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of hull  forms. It  is  also useful  for  longitudinal  curves, 
especially the centreplane curve (CPC) of typical cruiser-
racer and racing sailboat hulls, including multihulls.

A very useful  characteristic of the k-spline is that it  is 
possible  to  determine  in  advance,  whether  a  set  of 
parameters  will  lead to  a  valid  curve.  This  is  possible 
because  the  underlying  equations  yield  a  set  of 
inequalities  (equations  (12)  to  (15))  defining  a  valid 
range for  the value of each parameter,  in terms of the 
other parameters.

This  is  especially  useful  if  the  modelling  software  is 
required  to  automatically generate  a  family of variants 
based  on  an  initial  hull  model.  If  a  particular  set  of 
parameter  values  would  not  yield  a  valid  hull,  the 
software  can  immediately  recognise  the  problem,  skip 
the  offending  variant  and  move  onto  the  next.  The 
software is not required to perform a long-winded series 
of  trial  and  error  computations  before  abandoning  the 
invalid variant.

Another  useful  characteristic  is  that  the  k-spline  can 
extend  beyond  the  two  points  which  define  its 
dimensions and position. This feature is especially useful 
for  the  centreplane  curve  of  a  sailboat  hull  with  an 
overhanging stern.

2. DESCRIPTION OF THE K-SPLINE

The k-spline defines  a  hull  section with respect  to the 
centreline CL,  (where y = 0) and the datum waterline, 
DTL (where z = 0).

Figure 1: Typical hull section.

The  k-spline  equations  are  developed  from  the  basic 
relationship between breadth, draft, area coefficient, and 
section area (see Figure 1):

Cah   b = As (1)

The  design  of  the  k-spline  begins  with  the  following 
general equation:
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Equations  of  this  form  are  readily  integrable,  which 
means  it  is  possible  to  derive  a  simple  equation 
describing the area coefficient. Also, note that equation 

(2) is a function of the absolute value of y. This means 
that it is symmetrical about y = 0.

The curve is normalised so that when y = 1, f(y) = 1. This 
is achieved by setting:
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To define a k-spline of the third degree, the following 
substitutions are made in equation (3):

a1 = a1

p1 = 0
p2 = mp3

This yields the following parametric equations:
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Note that when t = 0, the gradient in Cartesian co-
ordinates is equal to s, that is, the deadrise gradient = s.
An expression for the area coefficient can be obtained by 
integrating equations (4) and (5). In Cartesian co-
ordinates, this is:
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Equation (6) defines the index, p3, in terms of the k-
spline parameters Ca, s, a2, and m. If the parameters are 
constants, equation (6) is a quadratic function of p3. 
Solving for p3 yields:
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For any set of parameter values (Ca, s, m, a2), equation 
(7) has two solutions. Practical k-spline software must 
determine if equation (7) has real solutions, that is, it 
must determine whether β1

2 > 4β0 β2.



To ensure that the curve is always convex, the indices are 
always greater than one. Also, from the practical 
perspective, it is also necessary to specify a maximum 
value for p3. This avoids excessively large values for p3, 
which would cause a computer system to overflow.

m3 pp1 ≤< (11)

If equation (7) has two real solutions, the software selects 
the numerically greater solution, provided that it also 
satisfies equation (11).

The design of the k-spline ensures that each of its 
parameters (Ca, s, m, a2) can range between zero and 
one. However, they must satisfy the following 
constraints:
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Equations (13) and (14) are derived from equation (6). 
Equations (12) and (15) are derived from equations (7) 
and (11).

Although the k-spline is undefined for Ca=0.5, it is 
possible to programme a computer system to draw a 
section with this value. It would be a straight line, that is, 
it would represent a section whose underwater shape is 
triangular. It is acceptable for the software to make this 
assumption because the closer Ca gets to 0.5, the closer 
the resulting curve resembles a straight line.

In practical k-spline software, equations (12) to (15) are 
used to check if a set of parameter values will produce a 
valid curve, and to reject parameter values which do not. 
For example, as Ca approaches 1.0, the k-spline 
approaches a rectangle. A rectangular section would have 
s=0 and Ca=1. Substituting these values into equation (8) 
yields β0 = 0, resulting in division by zero in equation 
(7). This means that it is not possible to define a k-spline 
with an area coefficient of one.

Because the k-spline is defined directly from the 
parameters, the software yields a smooth curve without 
the need for heuristic (or “trial and error”) processing. To 
determine the validity of a k-spline, the software 
evaluates equations (7) to (15). If the input parameter 
values satisfy equations (7) to (15), the system draws a 
smooth curve. If the input parameter values do not satisfy 
equations (7) to (15), the system rejects the inputs.
Computer software can exploit this feature in at least two 
ways.

If a designer is manually developing a hull shape, and 
they specify a parameter value which is not valid, the 
software can ignore the change and warn the designer 
that this is not a valid request.

If the software is automatically creating a family of hulls, 
and it encounters a variant with an invalid combination 
of parameter values, the software can skip that variant 
and go to the next one.

In contrast, an iterative process is necessary to fair other 
types of spline curves. The system evaluates a set of 
fairness equations, adjusts the curve, re-evaluates the 
fairness equations, and repeats the process until the curve 
is as fair as the computer can make it. Only after it has 
finished this iterative fairing process can a computer 
determine whether a set of inputs will produce a valid 
curve.

The k-spline reduces the demand on computing resources 
by eliminating this iterative fairing process. It is 
important to note, however, that the process of adding a 
faired surface to the basic framework (the “skinning 
process”) tends to demand more computing resources, 
than does the modelling of the framework’s basic curves.
Notice that the k-spline equations are valid for t>1. This 
means that k-spline curves can extend beyond the points 
from which they are defined. This is not generally true 
for b-spline curves [3].

Notice also that the k-spline indices are not necessarily 
integers. Most practical numerical techniques, such as b-
spline curves, are based on polynomials with integer 
values: 1, 2, 3…

The k-spline is based on a polynomial in which the 
indices are real numbers. That is, p3 can take any value 
between 1 and pm. It is not necessarily an integer. 
Because the k-spline is not based on traditional 
polynomials, indices, it can be seen as the result of a 
separate line of development from that which produced 
tools such as the b-spline [3]. B-splines are constructed 
from traditional polynomial curves.

However, fair skinning systems such as the lofted surface 
[1] and the metasurface make it practicable to use k-
spline sections in fully integrated CAD/CAM systems.

3. EFFECT OF PARAMETERS

Figures 2–4 illustrate the effect of varying the bilge 
factor, floor factor, and deadrise on the shape of a k-
spline section with Ca = 0.75.



Figure 2: Effect of varying deadrise on k-spline 
section.

Figure 3: Effect of varying floor factor on k-spline 
section.

Figure 4: Effect of varying bilge factor on k-spline 
section.

Note that the deadrise parameter (s) is defined in 
algebraic terms. It is the slope of the normalised curve 
when t=0.
In some projects it may be preferable to specify deadrise 
as an angle. The relationship between the deadrise 
parameter (s), and the deadrise angle (α) is simply 
derived from equations (4) and (5) by taking the value of 
the derivative when t = 0:
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4. APPLICATION TO A FRAMEWORK

Figure 5 illustrates a framework built around a k-spline 
centreplane curve (CPC). The underwater parts of the 
sections are also k-splines. The datum line (DTL) and 
deck edge curve (DEC) are f-splines [1].

The k-spline parameter values are defined by 
longitudinal f-spline curves (ACC, BFC, DRC, and 
FFC). Each of these four parameter curves defines the 
value of the relevant parameter at any position along the 
length of the hull.

Notice that the values of all section parameters are 
defined at every longitudinal position along the hull. This 
means that it is possible to draw a section curve at any 
longitudinal position.

This model was skinned with a lofted surface [1].

To illustrate the underlying framework, the starboard 
skin has been omitted from Figure 5. DRC and FFC have 
also been omitted for clarity. In Figure 5, the deadrise (s) 
is zero along the entire length of the hull, and the floor 
factor (a2) is constant along the entire length.

Figure 5: A simple framework based on k-spline 
curves.

Figure 6 illustrates the basic section curve used in the 
model of Figure 5. Notice that the k-spline extends 
slightly above the DTL. An f-spline [1] defines the upper 
part of the curve. The tangent angle and curvature of the 
f-spline segment are equal to those of the k-spline at the 
transition. This ensures a smooth transition. 

The height of the transition point can be anywhere above 
DTL, at the designer’s discretion. Its vertical position is 
defined by a longitudinal parameter curve similar to 
those which define the k-spline parameters.



Figure 6: Section curve used in Figure 5.

5. A  PRACTICAL  APPLICATION:  UPRIGHT 
AND HEELED WATERLINES AND TRIM 

The k-spline and parametric hull modelling techniques 
can address a wide variety of design challenges.
One such challenge is the conflicting requirements of 
upwind and downwind sailing. The flat and level (or 
upright) condition resembles downwind sailing 
conditions, but for many sailboats it is almost entirely 
irrelevant upwind. What matters upwind, is how the hull 
performs when it is heeled.

This problem would be simplified if there were a 
practical method of adjusting the heeled hydrostatic 
characteristics of a hull, without changing its upright 
hydrostatics. It is particularly difficult to develop such a 
technique that works for hulls with flat aft sections and 
overhanging ends.

Equation (1) suggests a way to tackle this challenge. A 
family of hulls, all of which have the same design 
waterline, centreplane curve (CPC), and area coefficient 
curve (ACC), will have identical curves of areas (SAC) 
and displacement volumes. They will also have identical 
values of LCB and LCF in the upright condition.

This fact can be exploited with k-spline sections. The 
parameters s, a2, and m, are independent of Ca within the 
limits imposed by equations (12)–(15). This means that 
the shape of a k-spline section can be changed without 
affecting its area coefficient.

The area coefficient is specified with respect to a 
horizontal datum line DTL. If this datum line coincides 
with LWL, then the underwater shape can be changed 
without affecting the displacement, LCB, or LCF, in the 
upright condition.

To demonstrate how this might be applied in a practical 
situation, a family of six hulls was created by varying the 
values of the k-spline parameters of a base hull.
The framework used for this experiment is a more 
sophisticated version of the framework shown in Figure 
5. The sections are k-splines below DTL and f-splines 
above, (Figure 6) with the k-spline/ f-spline transition at 
the datum line. The values of the k-spline parameter 

curves ACC, BFC, DRC, and FFC are specified at three 
longitudinal reference stations, aft, mid, and fwd (see 
Figure 5 and Table 2). Intermediate values are specified 
by f-spline curves. CPC consists of k-spline underwater 
curves blended into the straight stem with a “fillet” 
curve, which is a variant of the f-spline. Deadrise is zero. 
The model was skinned with two metasurfaces.
All members of the family have the same basic 
dimensions as the base hull, “hull zero” (Table 1).

Table 1: Dimensions of all hulls.

LOA 17.167 m
LWL 15.678 m
BWL 4.67 m
Draft 0.53 m
Displ 14.973 m3

Cp 0.529
LCB 46.77 % LWL2

LCF 42.12 % LWL
Ca aft 0.77
Ca mid 0.77
Ca fwd 0.68
m fwd 0.96
a2 fwd 0.6

Hulls 1 to 3 were created by varying the values of m and 
a2 at the aft and mid stations, while holding all parameter 
values constant at the bow (Table 2). In other words, all 
of these hulls have similar bows, but their middle and aft 
bodies are different.

The hull modelling and hydrostatic calculations were 
done with the Friendship Framework v1.1, running on 
Windows Vista. The computer was a 32-bit 1.86 GHz 
Toshiba Satellite M01 notebook. It took about twelve 
seconds to generate hulls 1 to 3.

Table 2: Parameter values across the family.

Hull 
#

m
(aft & mid)

a2
(aft & mid)

Overall 
breadth (m)

0 0.2 0.3 5.304
1 0.2 0.7 5.033
2 0.8 0.3 5.973
3 0.8 0.7 5.967
4 0.8 0.3 5.304
5 0.8 0.7 5.304

The overall breadth of hulls 0 to 3 was not constrained. 
This meant that when the k-spine parameters were 
changed, the overall breadth across the deck also 
changed.

Hulls 4 and 5 have had their overall breadth reduced so 
that they are the same width as hull 0. This breadth 
reduction affects the shape of the f-spline part of their 
sections, but not the k-spline part. Because the k-spline – 
f-spline transition is above DTL, the underwater shapes 

2 Measured from the intersection of LWL and CPC.



of hulls 4 and 5 in the upright condition are identical to 
those of hulls 2 and 3 respectively.

To assess the effect of parametric changes on the heeled 
underwater shapes of these hulls, their hydrostatic 
characteristics were calculated at a heel angle of thirty 
degrees. Each hull was trimmed and its immersion depth 
adjusted so that the heeled LCB was equal to the upright 
LCB. The heeled displacement volume was equal to the 
upright displacement. No allowance was made for the 
influence of sail forces or changes to crew positions.

Table 3: Hull characteristics at 30 degrees heel

Hull 
#

Trim angle
(degrees)

LCF
(% LWL)

LCF
(metres)

0 -2.20 46.90 7.354
1 -2.03 47.13 7.389
2 -2.61 46.32 7.262
3 -2.61 46.33 7.264
4 -2.35 46.47 7.285
5 -2.35 46.47 7.286

This comparison illustrates the relative influence on the 
section shape, of the bilge and floor factors. For example, 
hulls 0 and 4 have the same floor factor and overall 
breadth, but different bilge factors. At thirty degrees heel, 
hull 4’s LCF is 69 mm further aft than that of hull 0 
(Table 3). Figure 7 illustrates the difference between the 
heeled waterlines of these two hulls.

Figure 7: Heeled waterlines of hulls 0 (black) and 4 
(grey).

The floor factor has a more subtle effect. Hulls 0 and 1 
have the same bilge factor but different floor factors. 
There is a noticeable difference between the angle of the 
topsides at the waterline, and the underwater section 
shape. This affects the shape of the topsides f-spline, and 
is particularly apparent in the outer buttocks. (Figures 8 
and 9).

However, the floor factor has only a small influence on 
the shape of the heeled waterlines. Hulls 4 and 5, for 
example, have different floor factors but the same overall 
breadth. Their heeled LCFs and waterlines are very 
similar (Table 3).

Figure 8: Hull zero.

Figure 9: Hull one.

Figure 10: Hull three.

Figure 11: Hull five.

The trim angle is also affected by changes to the k-spline 
parameters, especially the bilge factor. Figures 12 to 14 
illustrate the fore and aft overhang of several hulls at 
thirty degrees heel.

Figure 12: Fish's eye view of hull one at 30 degrees 
heel.

Figure 13: Fish’s eye view of hull two at 30 degrees 
heel.

Figure 14: Fish’s eye view of hull four at 30 degrees 
heel.



6. EFFECT OF OVERHANGS ON ACCURACY

To accommodate overhanging ends, the framework has a 
datum line which curves upward slightly at the ends 
(Figure 15).

The curved datum line overcomes three complications 
introduced by overhanging ends: first, the angle between 
the aft end of the load waterline depends on the deadrise 
angle and the angles of the LWL and CPC; second, the 
curvature of the aft end of the waterline is affected by the 
curvature of the sections, the LWL, and the CPC, at the 
aft perpendicular; and finally, since the overhang is 
above the load waterline, LWL is unsuitable for the 
horizontal reference axis of the k-spline sections. These 
complications make it very difficult to design a section 
shape that precisely fits the ends of the hull, if the datum 
line coincides with the LWL.

Because the datum line is not positioned exactly on 
LWL, the ends of the design waterplane change their 
shape when the k-spline parameters are changed. This 
affects the upright hydrostatics, however, the effect is 
very small.

Table 4 lists the upright hydrostatics for hulls 0 to 5, and 
the difference between largest and smallest values, as a 
percentage of the mean value across the family of hulls. 
Table 4 also shows the moment of the LCB about the aft 
end of LWL (x = 0). The difference between the highest 
and lowest moment is 0.02353 tonne-m, which is 
approximately equivalent to moving a 1.3 kg weight 
from one end of the boat to the other.

Table 4: Upright hydrostatics of hulls 0 to 5

Hull Volume
(m3)

LCB
(metres)

LCF
(metres)

Moment
(tonne–m)*

0 14.9728 7.33333 6.59670 109.80048
1 14.9730 7.33332 6.59940 109.80180
2 14.9804 7.33118 6.60652 109.82401
3 14.9803 7.33116 6.60648 109.82298
4 14.9804 7.33118 6.60650 109.82401
5 14.9805 7.33120 6.60648 109.82504
Spread** 0.051% 0.030% 0.149% 0.02353
*  Fresh water.
** Percentage of family average.

Figure 15: Aft part of the framework, showing the curved datum 
line (DTL).

7. RADICAL TRANSFORMATIONS

The k-spline can also be used to radically transform a 
hull shape.

To illustrate the potential, a new hull was developed 
from hull zero by changing the k-spline parameters, 
raising the k-spline/f-spline transition point, extending 
the aft overhang, narrowing the stern and altering some 
details of the bow and the datum line.

Hull 6 has the same LWL and BWL as hull 0, however, 
its maximum draft has been increased to 0.6m. 
Displacement volume is 14.972 m3, and prismatic 
coefficient is 0.5. The k-spline parameters (Table 5) are 
constant along the length of the hull.

Notice that hull 6 is radically different from hulls 0 to 5, 
even though it was created by changing only a few hull 
parameters.

Table 5: Dimensions of hull six.

LOA 20.532 m
LWL 15.678 m
BWL 4.67 m
Draft 0.60 m
Displ 14.972 m3

Cp 0.50
Ca 0.68
s 0.20
m 0.12
a2 0.80



Figure 16: Hull six.

8. K-SPLINES OF HIGHER DEGREE

The author is investigating k-splines with i>3. A fourth 
degree k-spline in which i=4 and p2=2 is particularly 
interesting because it offers direct control of the 
curvature at the centreline.

Higher degree k-splines are not available in commercial 
hull design software.

9. IMPLEMENTATION

The k-spline has been implemented in a commercial hull 
modelling application, the Friendship Framework®. This 
software incorporates the hull modelling features used in 
this paper. The performance of a hull, or a family of 
hulls, can be evaluated by using the optional 
computational fluid dynamics software which is 
available as an add-on to the Friendship Framework®.

The Friendship Framework® has industry-standard 
interfaces which allow a designer to transfer the hull 
model into other programmes. For example, the model 
can be exported to industry-standard CAM systems, for 
example, to facilitate the construction of models for tank 
testing.

Finished hull models can be exported to detail drafting 
software for final design, using standard output formats 
such as IGES.

10. CONCLUSIONS

The  k-spline  complements  existing  parametric  hull 
design tools. It  is particularly useful for the underwater 
sections of all round-bilge hull forms. Used as part of a 
hull’s  centreplane  curve,  it  simplifies  the  design  of 
overhanging sterns.

This  paper  has  demonstrated  how the  k-spline  can  be 
used to change the underwater shape of a sailboat hull in 
a structured way. Hulls 0 to 5 have different underwater 
shapes,  but  they all  have  the  same upright  hydrostatic 
characteristics.

Such a family could be subjected to a CFD analysis or 
tank testing designed to identify the hull which best fits a 
particular design brief.

The k-spline also facilitates radical hull transformations. 
Hull 6 was created by varying a few parameters of hull 0, 
and yet hull 6 looks noticeably different from hulls 0 to 
5.

The purpose of this work has been to introduce the k-
spline and illustrate a potential application.
The k-spline has the potential to address other practical 
design  challenges.  The  author  does  not  claim  to  have 
thought of all possible applications.
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